login
a(n) is the sum of all divisors of the first n odd numbers.
9

%I #40 Nov 01 2023 18:30:17

%S 1,5,11,19,32,44,58,82,100,120,152,176,207,247,277,309,357,405,443,

%T 499,541,585,663,711,768,840,894,966,1046,1106,1168,1272,1356,1424,

%U 1520,1592,1666,1790,1886,1966,2087,2171,2279,2399,2489,2601,2729,2849,2947,3103,3205,3309,3501,3609,3719

%N a(n) is the sum of all divisors of the first n odd numbers.

%C a(n)/A326124(n) converges to 3/5.

%C a(n) is also the total area of the terraces of the first n odd-indexed levels of the stepped pyramid described in A245092.

%H Robert Israel, <a href="/A326123/b326123.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = A024916(2n) - A326124(n).

%F a(n) ~ Pi^2 * n^2 / 8. - _Vaclav Kotesovec_, Aug 18 2021

%e For n = 3 the first three odd numbers are [1, 3, 5] and their divisors are [1], [1, 3], [1, 5] respectively, and the sum of these divisors is 1 + 1 + 3 + 1 + 5 = 11, so a(3) = 11.

%p ListTools:-PartialSums(map(numtheory:-sigma, [seq(i,i=1..200,2)])); # _Robert Israel_, Jun 12 2019

%t Accumulate@ DivisorSigma[1, Range[1, 109, 2]] (* _Michael De Vlieger_, Jun 09 2019 *)

%o (PARI) terms(n) = my(s=0, i=0); for(k=0, n-1, if(i>=n, break); s+=sigma(2*k+1); print1(s, ", "); i++)

%o /* Print initial 50 terms as follows: */

%o terms(50) \\ _Felix Fröhlich_, Jun 08 2019

%o (PARI) a(n) = sum(k=1, 2*n-1, if (k%2, sigma(k))); \\ _Michel Marcus_, Jun 08 2019

%o (Python)

%o from math import isqrt

%o def A326123(n): return (-(s:=isqrt(r:=n<<1))**2*(s+1) + sum((q:=r//k)*((k<<1)+q+1) for k in range(1,s+1))>>1) -(t:=isqrt(m:=n>>1))**2*(t+1)+sum((q:=m//k)*((k<<1)+q+1) for k in range(1,t+1))+3*((u:=isqrt(n))**2*(u+1)-sum((q:=n//k)*((k<<1)+q+1) for k in range(1,u+1))>>1) # _Chai Wah Wu_, Nov 01 2023

%Y Partial sums of A008438.

%Y Cf. A000203, A005408, A024916, A237593, A245092, A326124.

%K nonn,easy

%O 1,2

%A _Omar E. Pol_, Jun 07 2019