login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A326094 E.g.f.: Sum_{n>=0} ((1+x)^n + 4)^n * x^n/n!. 5
1, 5, 27, 185, 1693, 20565, 316375, 5948465, 133579065, 3517749125, 107024710675, 3714813650025, 145570443534805, 6383184292589525, 310815510350462415, 16694390352153656225, 983323269272332915825, 63186890982241624232325, 4409134435821084657726475, 332714992062735780407411225 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

More generally, the following sums are equal:

(1) Sum_{n>=0} (q^n + p)^n * r^n/n!,

(2) Sum_{n>=0} q^(n^2) * exp(p*q^n*x) * r^n/n!;

here, q = (1+x) and p = 4, r = x.

In general, let F(x) be a formal power series in x such that F(0)=1, then

Sum_{n>=0} m^n * F(q^n*r)^p * log( F(q^n*r) )^n / n! =

Sum_{n>=0} r^n * [y^n] F(y)^(m*q^n + p);

here, F(x) = exp(x), q = 1+x, p = 4, r = x, m = 1.

LINKS

Paul D. Hanna, Table of n, a(n) for n = 0..300

FORMULA

E.g.f.: Sum_{n>=0} ((1+x)^n + 4)^n * x^n/n!,

E.g.f.: Sum_{n>=0} (1+x)^(n^2) * exp(4*x*(1+x)^n) * x^n/n!.

a(n) = 0 (mod 5) for n > 4.

EXAMPLE

E.g.f.: A(x) = 1 + 5*x + 27*x^2/2! + 185*x^3/3! + 1693*x^4/4! + 20565*x^5/5! + 316375*x^6/6! + 5948465*x^7/7! + 133579065*x^8/8! + 3517749125*x^9/9! + 107024710675*x^10/10! + ...

such that

A(x) = 1 + ((1+x) + 4)*x + ((1+x)^2 + 4)^2*x^2/2! + ((1+x)^3 + 4)^3*x^3/3! + ((1+x)^4 + 4)^4*x^4/4! + ((1+x)^5 + 4)^5*x^5/5! + ((1+x)^6 + 4)^6*x^6/6! + ((1+x)^7 + 4)^7*x^7/7! + ...

also

A(x) = 1 + (1+x)*exp(4*x*(1+x))*x + (1+x)^4*exp(4*x*(1+x)^2)*x^2/2! + (1+x)^9*exp(4*x*(1+x)^3)*x^3/3! + (1+x)^16*exp(4*x*(1+x)^4)*x^4/4! + (1+x)^25*exp(4*x*(1+x)^5)*x^5/5! + (1+x)^36*exp(4*x*(1+x)^6)*x^6/6! + ...

PROG

(PARI) /* E.g.f.: Sum_{n>=0} ((1+x)^n + 4)^n * x^n/n! */

{a(n) = my(A = sum(m=0, n, ((1+x)^m + 4 +x*O(x^n))^m * x^m/m! )); n!*polcoeff(A, n)}

for(n=0, 25, print1(a(n), ", "))

(PARI) /* E.g.f.: Sum_{n>=0} (1+x)^(n^2) * exp(4*x*(1+x)^n) * x^n/n! */

{a(n) = my(A = sum(m=0, n, (1+x +x*O(x^n))^(m^2) * exp(4*x*(1+x)^m +x*O(x^n)) * x^m/m! )); n!*polcoeff(A, n)}

for(n=0, 25, print1(a(n), ", "))

CROSSREFS

Cf. A326096, A326092, A326093.

Cf. A326274.

Sequence in context: A225309 A231091 A205774 * A232683 A240637 A023811

Adjacent sequences:  A326091 A326092 A326093 * A326095 A326096 A326097

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Jun 21 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 12:04 EST 2020. Contains 338947 sequences. (Running on oeis4.)