%I #12 Jun 03 2024 13:16:44
%S 1,1,1,1,2,2,2,4,8,8,8,10,14,25,40,49,62
%N Number of minimal complete subsets of {1..n} with maximum n.
%C A set of positive integers summing to m is complete if every nonnegative integer up to m is the sum of some subset. For example, (1,2,3,6,13) is a complete set because we have:
%C 0 = (empty sum)
%C 1 = 1
%C 2 = 2
%C 3 = 3
%C 4 = 1 + 3
%C 5 = 2 + 3
%C 6 = 6
%C 7 = 6 + 1
%C 8 = 6 + 2
%C 9 = 6 + 3
%C 10 = 1 + 3 + 6
%C 11 = 2 + 3 + 6
%C 12 = 1 + 2 + 3 + 6
%C and the remaining numbers 13-25 are obtained by adding 13 to each of these.
%H Andrzej Kukla and Piotr Miska, <a href="https://arxiv.org/abs/2405.18225">On practical sets and A-practical numbers</a>, arXiv:2405.18225 [math.NT], 2024.
%e The a(3) = 1 through a(9) = 8 subsets:
%e {1,2,3} {1,2,4} {1,2,3,5} {1,2,3,6} {1,2,3,7} {1,2,4,8} {1,2,3,4,9}
%e {1,2,4,5} {1,2,4,6} {1,2,4,7} {1,2,3,5,8} {1,2,3,5,9}
%e {1,2,3,6,8} {1,2,3,6,9}
%e {1,2,3,7,8} {1,2,3,7,9}
%e {1,2,4,5,9}
%e {1,2,4,6,9}
%e {1,2,4,7,9}
%e {1,2,4,8,9}
%t fasmin[y_]:=Complement[y,Union@@Table[Union[s,#]&/@Rest[Subsets[Complement[Union@@y,s]]],{s,y}]];
%t Table[Length[fasmin[Select[Subsets[Range[n]],Max@@#==n&&Union[Plus@@@Subsets[#]]==Range[0,Total[#]]&]]],{n,10}]
%Y Cf. A002033, A103295, A108917, A126796, A188431, A276024.
%Y Cf. A325684, A325781, A325790, A325791, A325986, A325988, A326016, A326020, A326021, A326036.
%K nonn,more
%O 1,5
%A _Gus Wiseman_, Jun 04 2019