login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A326006 G.f.: Sum_{n>=0} (n+1) * x^n * ((1+x)^n + 1)^n / (1 + x*(1+x)^n)^(n+2). 3
1, 2, 5, 10, 35, 110, 484, 2090, 10449, 54526, 306394, 1817190, 11357273, 74488856, 510662890, 3649746072, 27120964497, 209070202378, 1668632739832, 13763654492458, 117143535623438, 1027274860573646, 9269762507422848, 85969437563219710, 818533062206441679, 7992935182604293880, 79974062362514607510, 819199175961485536540, 8583780760842171037456 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

More generally, the following sums are equal:

(1) Sum_{n>=0} binomial(n+k-1, n) * r^n * (q^n + p)^n / (1 + p*q^n*r)^(n+k),

(2) Sum_{n>=0} binomial(n+k-1, n) * r^n * (q^n - p)^n / (1 - p*q^n*r)^(n+k),

for any fixed integer k; here, k = 2 and q = (1+x), p = 1, r = x. See other examples for k = 1 (A323680), k = 3 (A326007), k = 4 (A326008).

LINKS

Table of n, a(n) for n=0..28.

FORMULA

G.f.: Sum_{n>=0} (n+1) * x^n * ((1+x)^n + 1)^n / (1 + x*(1+x)^n)^(n+2).

G.f.: Sum_{n>=0} (n+1) * x^n * ((1+x)^n - 1)^n / (1 - x*(1+x)^n)^(n+2).

G.f.: Sum_{n>=0} (n+1) * x^n * Sum_{k=0..n} binomial(n,k) * ( (1+x)^n - (1+x)^k )^(n-k).

G.f.: Sum_{n>=0} (n+1) * x^n * Sum_{k=0..n} binomial(n,k) * ( (1+x)^n + (1+x)^k )^(n-k) * (-1)^k.

G.f.: Sum_{n>=0} (n+1) * x^n * Sum_{k=0..n} binomial(n,k) * Sum_{j=0..n-k} (-1)^j * binomial(n-k,j) * (1 + x)^((n-j)*(n-k)).

FORMULAS INVOLVING TERMS.

a(n) = Sum_{i=0..n} (n-i+1) * Sum_{j=0..n-i} Sum_{k=0..n-i-j} (-1)^k * binomial(n-i,j) * binomial(n-i-j,k) * binomial((n-i-j)*(n-i-k),i).

a(n) = Sum_{i=0..n} (n-i+1) * Sum_{j=0..n-i} Sum_{k=0..n-i-j} binomial((n-i-j)*(n-i-k),i) * (-1)^j * (n-i)! / ((n-i-j-k)!*j!*k!).

EXAMPLE

G.f.: A(x) = 1 + 2*x + 5*x^2 + 10*x^3 + 35*x^4 + 110*x^5 + 484*x^6 + 2090*x^7 + 10449*x^8 + 54526*x^9 + 306394*x^10 + 1817190*x^11 + 11357273*x^12 + ...

such that

A(x) = 1/(1+x)^2 + 2*x*((1+x) + 1)/(1 + x*(1+x))^3 + 3*x^2*((1+x)^2 + 1)^2/(1 + x*(1+x)^2)^4 + 4*x^3*((1+x)^3 + 1)^3/(1 + x*(1+x)^3)^5 + 5*x^4*((1+x)^4 + 1)^4/(1 + x*(1+x)^4)^6 + 6*x^5*((1+x)^5 + 1)^5/(1 + x*(1+x)^5)^7 + 7*x^6*((1+x)^6 + 1)^6/(1 + x*(1+x)^6)^8 + 8*x^7*((1+x)^7 + 1)^7/(1 + x*(1+x)^7)^9 + ...

also,

A(x) = 1/(1-x)^2 + 2*x*((1+x) - 1)/(1 - x*(1+x))^3 + 3*x^2*((1+x)^2 - 1)^2/(1 - x*(1+x)^2)^4 + 4*x^3*((1+x)^3 - 1)^3/(1 - x*(1+x)^3)^5 + 5*x^4*((1+x)^4 - 1)^4/(1 - x*(1+x)^4)^6 + 6*x^5*((1+x)^5 - 1)^5/(1 - x*(1+x)^5)^7 + 7*x^6*((1+x)^6 - 1)^6/(1 - x*(1+x)^6)^8 + 8*x^7*((1+x)^7 - 1)^7/(1 - x*(1+x)^7)^9 + ...

PROG

(PARI) {a(n) = my(A = sum(m=0, n+1, (m+1) * x^m*((1+x +x*O(x^n) )^m - 1)^m/(1 - x*(1+x +x*O(x^n) )^m )^(m+2) )); polcoeff(A, n)}

for(n=0, 35, print1(a(n), ", "))

(PARI) {a(n) = sum(i=0, n, (n-i+1) * sum(j=0, n-i, sum(k=0, n-i-j, (-1)^k * binomial(n-i, j) * binomial(n-i-j, k) * binomial((n-i-j)*(n-i-k), i) )))}

for(n=0, 35, print1(a(n), ", "))

(PARI) {a(n) = sum(i=0, n, (n-i+1) * sum(j=0, n-i, sum(k=0, n-i-j, (-1)^j * binomial((n-i-j)*(n-i-k), i) * (n-i)! / ((n-i-j-k)!*j!*k!) )))}

for(n=0, 35, print1(a(n), ", "))

CROSSREFS

Cf. A323680, A326007, A326008.

Sequence in context: A089073 A138190 A056300 * A144636 A320430 A018418

Adjacent sequences:  A326003 A326004 A326005 * A326007 A326008 A326009

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Jun 02 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 20:44 EST 2019. Contains 329849 sequences. (Running on oeis4.)