This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A325992 Heinz numbers of integer partitions such that not every ordered pair of distinct parts has a different difference. 8
 30, 60, 90, 105, 110, 120, 150, 180, 210, 220, 238, 240, 270, 273, 300, 315, 330, 360, 385, 390, 420, 440, 450, 462, 476, 480, 506, 510, 525, 540, 546, 550, 570, 600, 627, 630, 660, 690, 714, 720, 735, 750, 770, 780, 806, 810, 819, 840, 858, 870, 880, 900, 910 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). LINKS EXAMPLE The sequence of terms together with their prime indices begins:    30: {1,2,3}    60: {1,1,2,3}    90: {1,2,2,3}   105: {2,3,4}   110: {1,3,5}   120: {1,1,1,2,3}   150: {1,2,3,3}   180: {1,1,2,2,3}   210: {1,2,3,4}   220: {1,1,3,5}   238: {1,4,7}   240: {1,1,1,1,2,3}   270: {1,2,2,2,3}   273: {2,4,6}   300: {1,1,2,3,3}   315: {2,2,3,4}   330: {1,2,3,5}   360: {1,1,1,2,2,3}   385: {3,4,5}   390: {1,2,3,6} MATHEMATICA Select[Range[1000], !UnsameQ@@Subtract@@@Subsets[PrimePi/@First/@FactorInteger[#], {2}]&] CROSSREFS The subset case is A143823. The maximal case is A325879. The integer partition case is A325858. The strict integer partition case is A325876. Heinz numbers of the counterexamples are given by A325992. Cf. A002033, A056239, A108917, A112798, A143824, A325325, A325868, A325879, A325991, A325993, A325994. Sequence in context: A074915 A073461 A222618 * A056954 A246947 A226944 Adjacent sequences:  A325989 A325990 A325991 * A325993 A325994 A325995 KEYWORD nonn AUTHOR Gus Wiseman, Jun 02 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 23 22:20 EDT 2019. Contains 326254 sequences. (Running on oeis4.)