login
A325938
a(n) = omega(n)^tau(n), where omega=A001221 and tau=A000005.
1
0, 1, 1, 1, 1, 16, 1, 1, 1, 16, 1, 64, 1, 16, 16, 1, 1, 64, 1, 64, 16, 16, 1, 256, 1, 16, 1, 64, 1, 6561, 1, 1, 16, 16, 16, 512, 1, 16, 16, 256, 1, 6561, 1, 64, 64, 16, 1, 1024, 1, 64, 16, 64, 1, 256, 16, 256, 16, 16, 1, 531441, 1, 16, 64, 1, 16, 6561, 1, 64
OFFSET
1,6
LINKS
FORMULA
a(n) = A001221(n) ^ A000005(n).
EXAMPLE
a(5) = 1; 5 has one distinct prime divisor {5} and two divisors {1,5}, so a(5) = 1^2 = 1.
a(6) = 16; 6 has two distinct prime divisors {2,3} and four divisors {1,2,3,6}, so a(6) = 2^4 = 16.
PROG
(SageMath)
[ len(prime_divisors(x))^(len(divisors(x))) for x in range(1, 20) ]
(PARI) a(n) = {omega(n)^numdiv(n)} \\ Andrew Howroyd, Sep 09 2019
CROSSREFS
Cf. A000005(tau), A001221(omega), A110088, A248577.
Sequence in context: A040259 A353806 A040260 * A361132 A040258 A040257
KEYWORD
nonn
AUTHOR
Hauke Löffler, Sep 09 2019
STATUS
approved