login
A325937
Expansion of Sum_{k>=1} (-1)^(k + 1) * x^(2*k) / (1 - x^k).
4
0, 1, 1, 0, 1, 1, 1, -1, 2, 1, 1, -1, 1, 1, 3, -2, 1, 1, 1, -1, 3, 1, 1, -3, 2, 1, 3, -1, 1, 1, 1, -3, 3, 1, 3, -2, 1, 1, 3, -3, 1, 1, 1, -1, 5, 1, 1, -5, 2, 1, 3, -1, 1, 1, 3, -3, 3, 1, 1, -3, 1, 1, 5, -4, 3, 1, 1, -1, 3, 1, 1, -5, 1, 1, 5, -1, 3, 1, 1, -5
OFFSET
1,9
COMMENTS
Number of odd proper divisors of n minus number of even proper divisors of n.
LINKS
FORMULA
G.f.: Sum_{k>=2} x^k / (1 + x^k).
a(n) = -Sum_{d|n, d<n} (-1)^d.
a(n) = A048272(n) + (-1)^n.
MATHEMATICA
nmax = 80; CoefficientList[Series[Sum[(-1)^(k + 1) x^(2 k)/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
Table[-DivisorSum[n, (-1)^# &, # < n &], {n, 1, 80}]
PROG
(PARI) A325937(n) = -sumdiv(n, d, if(d==n, 0, ((-1)^d))); \\ Antti Karttunen, Sep 20 2019
CROSSREFS
Cf. A032741, A048272, A058344, A091954, A275495 (partial sums), A325939.
Sequence in context: A253642 A070084 A352635 * A327167 A268372 A361754
KEYWORD
sign,look
AUTHOR
Ilya Gutkovskiy, Sep 09 2019
STATUS
approved