login
A325899
Digits of the 2-adic integer 9^(1/5).
4
1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1
OFFSET
0
FORMULA
a(n) = (A325895(n+1) - A325895(n))/2^n.
a(n) = 0 if A325895(n)^5 - 9 is divisible by 2^(n+1), otherwise a(n) = 1.
EXAMPLE
Equals ...1011100101001100111111110111110111101001.
PROG
(PARI) a(n) = lift(sqrtn(9+O(2^(n+1)), 5))\2^n
CROSSREFS
Cf. A325895.
Digits of p-adic fifth-power roots:
A325896 (2-adic, 3^(1/5));
A325897 (2-adic, 5^(1/5));
A325898 (2-adic, 7^(1/5));
this sequence (2-adic, 9^(1/5));
A322169 (5-adic, 7^(1/5));
A309445 (7-adic, 2^(1/5));
A309446 (7-adic, 3^(1/5));
A309447 (7-adic, 4^(1/5));
A309448 (7-adic, 5^(1/5));
A309449 (7-adic, 6^(1/5)).
Sequence in context: A295889 A347523 A143221 * A126999 A306862 A363801
KEYWORD
nonn,base
AUTHOR
Jianing Song, Sep 07 2019
STATUS
approved