This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A325860 Number of subsets of {1..n} such that every pair of distinct elements has a different quotient. 20
 1, 2, 4, 8, 14, 28, 52, 104, 188, 308, 548, 1096, 1784, 3568, 6168, 10404, 16200, 32400, 49968, 99936, 155584, 256944, 433736, 867472, 1297504, 2026288 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Also subsets of {1..n} such that every orderless pair of (not necessarily distinct) elements has a different product. LINKS EXAMPLE The a(0) = 1 through a(4) = 14 subsets:   {}  {}   {}    {}     {}       {1}  {1}   {1}    {1}            {2}   {2}    {2}            {12}  {3}    {3}                  {12}   {4}                  {13}   {12}                  {23}   {13}                  {123}  {14}                         {23}                         {24}                         {34}                         {123}                         {134}                         {234} MATHEMATICA Table[Length[Select[Subsets[Range[n]], UnsameQ@@Divide@@@Subsets[#, {2}]&]], {n, 0, 20}] CROSSREFS The subset case is A325860. The maximal case is A325861. The integer partition case is A325853. The strict integer partition case is A325854. Heinz numbers of the counterexamples are given by A325994. Cf. A002033, A108917, A143823, A196723, A196723, A196724, A325855, A325858, A325859, A325868, A325869. Sequence in context: A096590 A068912 A164176 * A217932 A215978 A018086 Adjacent sequences:  A325857 A325858 A325859 * A325861 A325862 A325863 KEYWORD nonn,more AUTHOR Gus Wiseman, May 31 2019 EXTENSIONS a(21)-a(25) from Alois P. Heinz, Jun 07 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 18 04:50 EDT 2019. Contains 326072 sequences. (Running on oeis4.)