login
Triangle read by rows giving the number of configurations of n indistinguishable pairs placed on the vertices of the ladder graph P_2 X P_n such that exactly k such pairs are joined by a horizontal edge.
0

%I #22 Mar 20 2020 15:09:23

%S 1,1,0,2,0,1,7,4,4,0,43,38,21,2,1,372,360,168,36,9,0,4027,3972,1818,

%T 478,93,6,1,51871,51444,23760,6640,1260,144,16,0,773186,768732,358723,

%U 103154,20205,2734,278,12,1,13083385,13027060,6129670,1796740,363595,52900,5650,400,25,0

%N Triangle read by rows giving the number of configurations of n indistinguishable pairs placed on the vertices of the ladder graph P_2 X P_n such that exactly k such pairs are joined by a horizontal edge.

%C This is the number of "k-horizontal-domino" configurations in the game of memory played on a 2 X n rectangular array, see [Young].

%H D. Young, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL21/Young/young2.html">The Number of Domino Matchings in the Game of Memory</a>, Journal of Integer Sequences, Vol. 21 (2018), Article 18.8.1.

%H Donovan Young, <a href="https://arxiv.org/abs/1905.13165">Generating Functions for Domino Matchings in the 2 * k Game of Memory</a>, arXiv:1905.13165 [math.CO], 2019. Also in <a href="https://www.emis.de/journals/JIS/VOL22/Young/young13.html">J. Int. Seq.</a>, Vol. 22 (2019), Article 19.8.7.

%F G.f.: Sum_{j>=0} (2*j-1)!! y^j/(1-(1-z)*y)/(1+(1-z)*y)^(2*j+1).

%F E.g.f.: exp((sqrt(1 - 2 y)-1) (1 - z))/sqrt(1 - 2 y) - exp((y - 2) (1 - z)) sqrt(Pi/2) sqrt(1 - z) (-erfi(sqrt(2) sqrt(1 - z)) + erfi(((1 + sqrt(1 - 2 y)) sqrt(1 - z))/sqrt(2))).

%e The first few rows of T(n,k) are:

%e 1;

%e 1, 0;

%e 2, 0, 1;

%e 7, 4, 4, 0;

%e 43, 38, 21, 2, 1;

%e ...

%e For n=2, let the vertex set of P_2 X P_2 be {A,B,C,D} and the edge set be {AB, AC, BD, CD}, where AB and CD are horizontal edges. For k=0, we may place the pairs on A, C and B, D or on A, D and B, C, hence T(2,0) = 2. If we place a pair on one of the horizontal edges we are forced to place the other pair on the remaining horizontal edge, hence T(2,1)=0 and T(2,2)=1.

%t CoefficientList[Normal[Series[Sum[Factorial2[2*k-1]*y^k/(1-(1-z)*y)/(1+(1-z)*y)^(2*k+1), {k, 0, 20}], {y, 0, 20}]], {y, z}];

%Y Cf. A046741, A055140, A079267 A178523, A265167, A318243, A318244, A318267, A318268, A318269, A318270, A325753.

%K nonn,tabl

%O 0,4

%A _Donovan Young_, May 19 2019