OFFSET
1,1
COMMENTS
At any step only the least value greater than a(n) is taken into consideration. In fact, instead of 53, as a(2) we could choose 76, 367, 3366, 3666, 33367, 34350, 333366, ...
LINKS
Eric Weisstein's World of Mathematics, Egyptian fraction
EXAMPLE
1/3 = 0.3333...
1/3 + 1/(53-3) = 0.353333...
1/3 + 1/(53-3) + 1/(5254-53+3) = 0.3535254932...
The sum is 0.3 53 5254 ...
MAPLE
P:=proc(q, h) local a, b, d, n, t, z; a:=1/h; b:=length(h); d:=h; print(d); t:=h;
for n from t+1 to q do z:=evalf(evalf(a+1/(n-t), 100)*10^(b+length(n)), 100);
z:=trunc(z-frac(z)); if z=d*10^length(n)+n then b:=b+length(n);
d:=d*10^length(n)+n; t:=n-t; a:=a+1/t; print(n); fi; od; end: P(10^20, 3);
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Paolo P. Lava, May 17 2019
EXTENSIONS
a(4) - a(7) from Giovanni Resta, May 17 2019
STATUS
approved