|
|
A325703
|
|
If n = prime(i_1)^j_1 * ... * prime(i_k)^j_k, then a(n) is the denominator of the reciprocal factorial sum j_1/i_1! + ... + j_k/i_k!.
|
|
1
|
|
|
1, 1, 2, 1, 6, 2, 24, 1, 1, 6, 120, 2, 720, 24, 3, 1, 5040, 1, 40320, 6, 24, 120, 362880, 2, 3, 720, 2, 24, 3628800, 3, 39916800, 1, 120, 5040, 24, 1, 479001600, 40320, 720, 6, 6227020800, 24, 87178291200, 120, 6, 362880, 1307674368000, 2, 12, 3, 5040, 720
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
Alternatively, if n = prime(i_1) * ... * prime(i_k), then a(n) is the denominator of 1/i_1! + ... + 1/i_k!.
|
|
LINKS
|
Table of n, a(n) for n=1..52.
Gus Wiseman, Sequences counting and ranking integer partitions by their reciprocal sums
|
|
FORMULA
|
a(n) = A318574(A325709(n)).
|
|
MATHEMATICA
|
Table[Total[Cases[If[n==1, {}, FactorInteger[n]], {p_, k_}:>k/PrimePi[p]!]], {n, 100}]//Denominator
|
|
CROSSREFS
|
Factorial numbers: A000142, A002982, A011371, A022559, A071626, A076934, A108731, A325272, A325508, A325709.
Reciprocal sum: A002966, A316855, A316856, A316857, A318573, A318574, A325618, A325619, A325620, A325621, A325622, A325623, A325624, A325704.
Sequence in context: A089849 A185330 A217955 * A321898 A284434 A306543
Adjacent sequences: A325700 A325701 A325702 * A325704 A325705 A325706
|
|
KEYWORD
|
nonn,frac
|
|
AUTHOR
|
Gus Wiseman, May 18 2019
|
|
STATUS
|
approved
|
|
|
|