

A325638


Numbers n such that sigma(n) can be obtained as the base2 carryless product of 2n and some k.


4



6, 28, 456, 496, 6552, 8128, 30240, 31452, 32760, 429240, 2178540, 7505976, 23569920, 33550336, 45532800, 142990848
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Numbers n such that A000203(n) = A048720(2n, k) for some k.
Numbers n for which A091255(2n, sigma(n)) = 2n.
Conjecture: all terms are even. If this is true, then there are no odd perfect numbers. See also conjectures in A325639 and in A325808.


LINKS

Table of n, a(n) for n=1..16.
Index entries for sequences related to carryless arithmetic
Index entries for sequences where any odd perfect numbers must occur
Index entries for sequences related to sigma(n)


PROG

(PARI)
A091255sq(a, b) = fromdigits(Vec(lift(gcd(Pol(binary(a))*Mod(1, 2), Pol(binary(b))*Mod(1, 2)))), 2);
A325635(n) = A091255sq(n+n, sigma(n));
isA325638(n) = ((n+n)==A325635(n));


CROSSREFS

Cf. A000203, A091255, A325635, A325637, A325808.
Subsequence of A325639.
Cf. A000396 (a subsequence).
Sequence in context: A335290 A173360 A085844 * A331752 A083387 A104511
Adjacent sequences: A325635 A325636 A325637 * A325639 A325640 A325641


KEYWORD

nonn,more


AUTHOR

Antti Karttunen, May 21 2019


STATUS

approved



