login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A325610 Adjusted frequency depth of 2^n - 1. 4
0, 1, 1, 3, 1, 4, 1, 3, 3, 3, 3, 5, 1, 3, 3, 3, 1, 5, 1, 5, 5, 3, 3, 5, 3, 3, 3, 3, 3, 5, 1, 3, 3, 3, 3, 5, 3, 3, 3, 5, 3, 5, 3, 3, 3, 3, 3, 5, 3, 3, 3, 3, 3, 5, 3, 3, 3, 3, 3, 5, 1, 3, 5, 3, 3, 5, 3, 3, 3, 3, 3, 5, 3, 3, 3, 3, 3, 5, 3, 5, 3, 3, 3, 5, 3, 3, 3 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

The adjusted frequency depth of a positive integer n is 0 if n = 1, and otherwise it is 1 plus the number of times one must apply A181819 to reach a prime number, where A181819(k = p^i*...*q^j) = prime(i)*...*prime(j) = product of primes indexed by the prime exponents of k. For example, 180 has adjusted frequency depth 5 because we have: 180 -> 18 -> 6 -> 4 -> 3.

LINKS

Table of n, a(n) for n=1..87.

MATHEMATICA

fdadj[ptn_List]:=If[ptn=={}, 0, Length[NestWhileList[Sort[Length/@Split[#1]]&, ptn, Length[#1]>1&]]];

Table[fdadj[2^n-1], {n, 100}]

CROSSREFS

Cf. A001222, A001221, A056239, A071625, A112798, A323014, A325280.

Mersenne numbers: A046051, A046800, A059305, A325611, A325612, A325625.

Sequence in context: A165595 A213181 A301848 * A278536 A143825 A290478

Adjacent sequences:  A325607 A325608 A325609 * A325611 A325612 A325613

KEYWORD

nonn

AUTHOR

Gus Wiseman, May 12 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 12 12:30 EST 2019. Contains 329958 sequences. (Running on oeis4.)