login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A325366 Heinz numbers of integer partitions whose augmented differences are distinct. 15
1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 17, 19, 21, 22, 23, 25, 26, 29, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 49, 51, 53, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 99, 101, 102, 103 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

The augmented differences aug(y) of an integer partition y of length k are given by aug(y)_i = y_i - y_{i + 1} + 1 if i < k and aug(y)_k = y_k. For example, aug(6,5,5,3,3,3) = (2,1,3,1,1,3).

The enumeration of these partitions by sum is given by A325349.

LINKS

Table of n, a(n) for n=1..66.

Gus Wiseman, Sequences counting and ranking integer partitions by the differences of their successive parts.

EXAMPLE

The sequence of terms together with their prime indices begins:

    1: {}

    2: {1}

    3: {2}

    5: {3}

    6: {1,2}

    7: {4}

    9: {2,2}

   10: {1,3}

   11: {5}

   13: {6}

   14: {1,4}

   17: {7}

   19: {8}

   21: {2,4}

   22: {1,5}

   23: {9}

   25: {3,3}

   26: {1,6}

   29: {10}

   31: {11}

MATHEMATICA

primeptn[n_]:=If[n==1, {}, Reverse[Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]]];

aug[y_]:=Table[If[i<Length[y], y[[i]]-y[[i+1]]+1, y[[i]]], {i, Length[y]}];

Select[Range[100], UnsameQ@@aug[primeptn[#]]&]

CROSSREFS

Positions of squarefree numbers in A325351.

Cf. A056239, A093641, A112798, A130091, A325349, A325355, A325367, A325368, A325389, A325394, A325395, A325396, A325405.

Sequence in context: A065896 A099308 A074235 * A192189 A285375 A321372

Adjacent sequences:  A325363 A325364 A325365 * A325367 A325368 A325369

KEYWORD

nonn,changed

AUTHOR

Gus Wiseman, May 02 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 21 10:07 EDT 2021. Contains 343148 sequences. (Running on oeis4.)