login
A325318
a(n) = A048250(n) AND A162296(n), where AND is the bitwise-AND, A004198.
3
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 16, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 32, 16, 0, 0, 0, 0, 2, 0, 40, 0, 12, 0, 0, 0, 0, 0, 64, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 16, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 64, 0, 0, 0, 0, 0, 16, 32, 2, 0, 0, 0, 40, 0
OFFSET
1,18
FORMULA
a(n) = A004198(A048250(n), A162296(n)).
a(n) = A000203(n) - A325316(n) = (A000203(n) - A325317(n))/2.
a(n) = A325316(n) - A325317(n).
MATHEMATICA
Array[BitAnd @@ Map[Total, {#3, Complement[#2, #3]}] & @@ {#1, #2, Select[#2, SquareFreeQ]} & @@ {#, Divisors[#]} &, 105] (* Michael De Vlieger, Apr 21 2019 *)
PROG
(PARI)
A048250(n) = factorback(apply(p -> p+1, factor(n)[, 1]));
A162296(n) = sumdiv(n, d, d*(1-issquarefree(d)));
A325318(n) = bitand(A048250(n), A162296(n));
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Apr 21 2019
STATUS
approved