OFFSET
1,1
COMMENTS
We define the omega-sequence of n (row n of A323023) to have length A323014(n) = adjusted frequency depth of n, and the k-th term is Omega(red^{k-1}(n)), where Omega = A001222 and red^{k} is the k-th functional iteration of red = A181819, defined by red(n = p^i*...*q^j) = prime(i)*...*prime(j) = product of primes indexed by the prime exponents of n. For example, we have 180 -> 18 -> 6 -> 4 -> 3, so the omega-sequence of 180 is (5,3,2,2,1).
EXAMPLE
The sequence of terms together with their omega-sequences begins:
6: 2 2 1 46: 2 2 1 80: 5 2 2 1 112: 5 2 2 1
10: 2 2 1 48: 5 2 2 1 81: 4 1 114: 3 3 1
12: 3 2 2 1 50: 3 2 2 1 82: 2 2 1 115: 2 2 1
14: 2 2 1 51: 2 2 1 84: 4 3 2 2 1 116: 3 2 2 1
15: 2 2 1 52: 3 2 2 1 85: 2 2 1 117: 3 2 2 1
16: 4 1 54: 4 2 2 1 86: 2 2 1 118: 2 2 1
18: 3 2 2 1 55: 2 2 1 87: 2 2 1 119: 2 2 1
20: 3 2 2 1 56: 4 2 2 1 88: 4 2 2 1 120: 5 3 2 2 1
21: 2 2 1 57: 2 2 1 90: 4 3 2 2 1 122: 2 2 1
22: 2 2 1 58: 2 2 1 91: 2 2 1 123: 2 2 1
24: 4 2 2 1 60: 4 3 2 2 1 92: 3 2 2 1 124: 3 2 2 1
26: 2 2 1 62: 2 2 1 93: 2 2 1 126: 4 3 2 2 1
28: 3 2 2 1 63: 3 2 2 1 94: 2 2 1 128: 7 1
30: 3 3 1 64: 6 1 95: 2 2 1 129: 2 2 1
32: 5 1 65: 2 2 1 96: 6 2 2 1 130: 3 3 1
33: 2 2 1 66: 3 3 1 98: 3 2 2 1 132: 4 3 2 2 1
34: 2 2 1 68: 3 2 2 1 99: 3 2 2 1 133: 2 2 1
35: 2 2 1 69: 2 2 1 100: 4 2 1 134: 2 2 1
36: 4 2 1 70: 3 3 1 102: 3 3 1 135: 4 2 2 1
38: 2 2 1 72: 5 2 2 1 104: 4 2 2 1 136: 4 2 2 1
39: 2 2 1 74: 2 2 1 105: 3 3 1 138: 3 3 1
40: 4 2 2 1 75: 3 2 2 1 106: 2 2 1 140: 4 3 2 2 1
42: 3 3 1 76: 3 2 2 1 108: 5 2 2 1 141: 2 2 1
44: 3 2 2 1 77: 2 2 1 110: 3 3 1 142: 2 2 1
45: 3 2 2 1 78: 3 3 1 111: 2 2 1 143: 2 2 1
MATHEMATICA
omseq[n_Integer]:=If[n<=1, {}, Total/@NestWhileList[Sort[Length/@Split[#]]&, Sort[Last/@FactorInteger[n]], Total[#]>1&]];
Select[Range[100], Total[omseq[#]]>4&]
CROSSREFS
Positions of terms > 4 in A325249.
Numbers with omega-sequence summing to m: A000040 (m = 1), A001248 (m = 3), A030078 (m = 4), A068993 (m = 5), A050997 (m = 6), A325264 (m = 7).
KEYWORD
nonn
AUTHOR
Gus Wiseman, Apr 18 2019
STATUS
approved