login
A325260
Number of integer partitions of n whose omega-sequence covers an initial interval of positive integers.
4
1, 1, 2, 2, 4, 5, 5, 8, 10, 12, 13, 18, 19, 24, 25, 31, 33, 40, 40, 49, 51, 59, 60, 71, 72, 83, 84, 96, 98, 111, 111, 126, 128, 142, 143, 160, 161, 178, 179, 197, 199, 218, 218, 239, 241, 261, 262, 285, 286, 309, 310, 334, 336, 361, 361, 388, 390, 416, 417, 446
OFFSET
0,3
COMMENTS
The omega-sequence of an integer partition is the sequence of lengths of the multisets obtained by repeatedly taking the multiset of multiplicities until a singleton is reached. For example, the partition (32211) has chain of multisets of multiplicities {1,1,2,2,3} -> {1,2,2} -> {1,2} -> {1,1} -> {2}, so its omega-sequence is (5,3,2,2,1).
The Heinz numbers of these partitions are given by A325251.
FORMULA
a(n) + A325262(n) = A000041(n).
Conjectures from Chai Wah Wu, Jan 13 2021: (Start)
a(n) = a(n-2) + a(n-3) + a(n-4) - a(n-5) - a(n-6) - a(n-7) + a(n-9) for n > 9.
G.f.: (-x^9 - x^8 - x^7 + x^6 - x^5 - x^2 - x - 1)/((x - 1)^3*(x + 1)^2*(x^2 + 1)*(x^2 + x + 1)). (End)
EXAMPLE
The a(1) = 1 through a(9) = 12 partitions:
(1) (2) (3) (4) (5) (6) (7) (8) (9)
(11) (21) (22) (32) (33) (43) (44) (54)
(31) (41) (42) (52) (53) (63)
(211) (221) (51) (61) (62) (72)
(311) (411) (322) (71) (81)
(331) (332) (441)
(511) (422) (522)
(3211) (611) (711)
(3221) (3321)
(4211) (4221)
(4311)
(5211)
MATHEMATICA
normQ[m_]:=Or[m=={}, Union[m]==Range[Max[m]]];
omseq[ptn_List]:=If[ptn=={}, {}, Length/@NestWhileList[Sort[Length/@Split[#]]&, ptn, Length[#]>1&]];
Table[Length[Select[IntegerPartitions[n], normQ[omseq[#]]&]], {n, 0, 30}]
CROSSREFS
Integer partition triangles: A008284 (first omega), A116608 (second omega), A325242 (third omega), A325268 (second-to-last omega), A225485 or A325280 (length/frequency depth).
Sequence in context: A035632 A114701 A349464 * A325325 A240851 A261665
KEYWORD
nonn
AUTHOR
Gus Wiseman, Apr 16 2019
STATUS
approved