OFFSET
1,1
COMMENTS
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions with one fewer distinct multiplicities than distinct parts. The enumeration of these partitions by sum is given by A325244.
EXAMPLE
The sequence of terms together with their prime indices begins:
6: {1,2}
10: {1,3}
14: {1,4}
15: {2,3}
21: {2,4}
22: {1,5}
26: {1,6}
33: {2,5}
34: {1,7}
35: {3,4}
36: {1,1,2,2}
38: {1,8}
39: {2,6}
46: {1,9}
51: {2,7}
55: {3,5}
57: {2,8}
58: {1,10}
60: {1,1,2,3}
62: {1,11}
MATHEMATICA
Select[Range[100], PrimeNu[#]==Length[Union[Last/@FactorInteger[#]]]+1&]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Apr 18 2019
STATUS
approved