login
Heinz number of the omega-sequence of n.
26

%I #8 Aug 22 2019 09:52:23

%S 1,2,2,6,2,18,2,10,6,18,2,90,2,18,18,14,2,90,2,90,18,18,2,126,6,18,10,

%T 90,2,50,2,22,18,18,18,42,2,18,18,126,2,50,2,90,90,18,2,198,6,90,18,

%U 90,2,126,18,126,18,18,2,630,2,18,90,26,18,50,2,90,18,50

%N Heinz number of the omega-sequence of n.

%C We define the omega-sequence of n (row n of A323023) to have length A323014(n) = adjusted frequency depth of n, and the k-th term is Omega(red^{k-1}(n)), where Omega = A001222 and red^{k} is the k-th functional iteration of red = A181819, defined by red(n = p^i*...*q^j) = prime(i)*...*prime(j) = product of primes indexed by the prime exponents of n. For example, we have 180 -> 18 -> 6 -> 4 -> 3, so the omega-sequence of 180 is (5,3,2,2,1).

%C The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

%F A001222(a(n)) = A323014(n).

%F A061395(a(n)) = A001222(n).

%F A304465(n) = A055396(a(n)/2).

%F A325249(n) = A056239(a(n)).

%F a(n!) = A325275(n).

%e The omega-sequence of 180 is (5,3,2,2,1) with Heinz number 990, so a(180) = 990.

%t omseq[n_Integer]:=If[n<=1,{},Total/@NestWhileList[Sort[Length/@Split[#]]&,Sort[Last/@FactorInteger[n]],Total[#]>1&]];

%t Table[Times@@Prime/@omseq[n],{n,100}]

%Y Positions of squarefree terms are A325247.

%Y Positions of normal numbers (A055932) are A325251.

%Y First positions of each distinct term are A325238.

%Y Cf. A056239, A070175, A112798, A118914, A181819, A181821, A323023, A325249, A325275, A325277.

%Y Omega-sequence statistics: A001222 (first omega), A001221 (second omega), A071625 (third omega), A323022 (fourth omega), A304465 (second-to-last omega), A182850 or A323014 (length/frequency depth), A325248 (Heinz number).

%K nonn

%O 1,2

%A _Gus Wiseman_, Apr 16 2019