%I #6 Apr 10 2019 22:01:46
%S 2,6,9,10,12,14,20,22,24,26,28,30,34,38,40,42,44,45,46,48,50,52,56,58,
%T 60,62,63,66,68,70,74,75,76,78,80,82,84,86,88,90,92,94,96,98,99,100,
%U 102,104,106,110,112,114,116,117,118,120,122,124,125,126,130,132
%N Heinz numbers of integer partitions such that the upper-left square of the Young diagram has strictly greater graph-distance from the lower-right boundary than any other square.
%C The k-th part of the origin-to-boundary partition of a Young diagram is the number of squares graph-distance k from the lower-right boundary. The sequence gives all Heinz numbers of integer partitions whose Young diagram has last part of its origin-to-boundary partition equal to 1.
%C The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/GraphDistance.html">Graph Distance</a>.
%H Gus Wiseman, <a href="/A325185/a325185.png">Young diagrams for the first 25 terms</a>.
%e The sequence of terms together with their prime indices begins:
%e 2: {1}
%e 6: {1,2}
%e 9: {2,2}
%e 10: {1,3}
%e 12: {1,1,2}
%e 14: {1,4}
%e 20: {1,1,3}
%e 22: {1,5}
%e 24: {1,1,1,2}
%e 26: {1,6}
%e 28: {1,1,4}
%e 30: {1,2,3}
%e 34: {1,7}
%e 38: {1,8}
%e 40: {1,1,1,3}
%e 42: {1,2,4}
%e 44: {1,1,5}
%e 45: {2,2,3}
%e 46: {1,9}
%e 48: {1,1,1,1,2}
%t hptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
%t otb[ptn_]:=Min@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]];
%t Select[Range[2,100],otb[hptn[#]]>otb[Rest[hptn[#]]]&&otb[hptn[#]]>otb[DeleteCases[hptn[#]-1,0]]&]
%Y Cf. A001222, A056239, A061395, A065770, A112798, A188674.
%Y Cf. A325169, A325183, A325184, A325186, A325187, A325196.
%K nonn
%O 1,1
%A _Gus Wiseman_, Apr 08 2019