login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A325183 Heinz number of the origin-to-boundary partition of the Young diagram of the integer partition with Heinz number n. 9
1, 2, 3, 3, 5, 6, 7, 5, 10, 10, 11, 10, 13, 14, 15, 7, 17, 15, 19, 14, 21, 22, 23, 14, 21, 26, 21, 22, 29, 30, 31, 11, 33, 34, 35, 21, 37, 38, 39, 22, 41, 42, 43, 26, 42, 46, 47, 22, 55, 42, 51, 34, 53, 35, 55, 26, 57, 58, 59, 42, 61, 62, 66, 13, 65, 66, 67 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

The k-th part of the origin-to-boundary partition of a Young diagram is the number of squares graph-distance k from the lower-right boundary.

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

LINKS

Table of n, a(n) for n=1..67.

Eric Weisstein's World of Mathematics, Graph Distance.

EXAMPLE

The partition with Heinz number 7865 is (6,5,5,3), with diagram

  o o o o o o

  o o o o o

  o o o o o

  o o o

with origin-to-boundary graph-distances

  4 4 4 3 2 1

  3 3 3 2 1

  2 2 2 1 1

  1 1 1

giving the origin-to-boundary partition (7,5,4,3) with Heinz number 6545, so a(7865) = 6545.

MATHEMATICA

primeptn[n_]:=If[n==1, {}, Reverse[Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]]];

ptnmat[ptn_]:=PadRight[(ConstantArray[1, #]&)/@Sort[ptn, Greater], {Length[ptn], Max@@ptn}+1];

corpos[mat_]:=ReplacePart[mat, Select[Position[mat, 1], Times@@Extract[mat, {#+{1, 0}, #+{0, 1}}]==0&]->0];

Table[Times@@Prime/@If[n==1, {}, -Differences[Map[Total, Drop[FixedPointList[corpos, ptnmat[primeptn[n]]], -1], 2]]], {n, 30}]

CROSSREFS

The only terms appearing only once are the primorials A002110.

The union consists of all squarefree numbers A005117.

Cf. A000245, A056239, A065770, A112798, A174090, A297113.

Cf. A325166, A325167, A325169, A325184, A325188, A325189, A325195.

Sequence in context: A085310 A055653 A155918 * A097248 A097247 A097246

Adjacent sequences:  A325180 A325181 A325182 * A325184 A325185 A325186

KEYWORD

nonn

AUTHOR

Gus Wiseman, Apr 08 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 12 19:33 EST 2019. Contains 329078 sequences. (Running on oeis4.)