

A325181


Number of integer partitions of n such that the difference between the length of the minimal square containing and the maximal square contained in the Young diagram is 1.


6



0, 0, 2, 1, 0, 2, 3, 2, 1, 0, 2, 3, 4, 3, 2, 1, 0, 2, 3, 4, 5, 4, 3, 2, 1, 0, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1, 0, 2, 3, 4, 5, 6, 7, 6, 5, 4, 3, 2, 1, 0, 2, 3, 4, 5, 6, 7, 8, 7, 6, 5, 4, 3, 2, 1, 0, 2, 3, 4, 5, 6, 7, 8, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 2, 3, 4, 5, 6
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

The maximal square contained in the Young diagram of an integer partition is called its Durfee square, and its length is the rank of the partition.


LINKS

Giovanni Resta, Table of n, a(n) for n = 0..150


EXAMPLE

The a(2) = 2 through a(15) = 1 partitions:
(2) (21) (32) (33) (322) (332) (433) (443) (444) (4333) (4433) (4443)
(11) (221) (222) (331) (3331) (3332) (3333) (4432) (4442)
(321) (4331) (4332) (4441)
(4431)


MATHEMATICA

durf[ptn_]:=Length[Select[Range[Length[ptn]], ptn[[#]]>=#&]];
codurf[ptn_]:=Max[Length[ptn], Max[ptn]];
Table[Length[Select[IntegerPartitions[n], codurf[#]durf[#]==1&]], {n, 0, 30}]


CROSSREFS

Cf. A006918, A084835, A096771, A257990, A263297, A325178, A325179, A325182, A325191, A325192, A325198.
Sequence in context: A055288 A203995 A111374 * A072739 A328699 A030399
Adjacent sequences: A325178 A325179 A325180 * A325182 A325183 A325184


KEYWORD

nonn,look


AUTHOR

Gus Wiseman, Apr 08 2019


EXTENSIONS

More terms from Giovanni Resta, Apr 15 2019


STATUS

approved



