login
A325140
a(n) = Sum_{k=0..n} Sum_{j=0..n-k} binomial(j+k, k)*|Stirling1(n, j+k)|*(k+2)^j.
1
1, 3, 14, 87, 668, 6070, 63474, 748902, 9823904, 141648408, 2224529640, 37766939760, 688838821032, 13426208682120, 278381951154384, 6115924828583640, 141876076197342720, 3464565965515181760, 88816387548215208384, 2384385707634518563776, 66886418077269442554240
OFFSET
0,2
PROG
(PARI) a(n) = sum(k=0, n, sum(j=0, n-k, binomial(j+k, k)*abs(stirling(n, j+k, 1))*(k+2)^j)); \\ Michel Marcus, Apr 15 2019
CROSSREFS
Row sums of A325139.
Sequence in context: A051818 A091102 A323771 * A132624 A121587 A332256
KEYWORD
nonn
AUTHOR
Peter Luschny, Apr 15 2019
STATUS
approved