%I #7 Jul 27 2019 14:57:51
%S 0,1,2,4,5,7,9,11,12,14,16,18,20,22,24,28,29,31,33,35,37,39,41,43,45,
%T 47,49,53,55,57,61,63,64,66,68,70,72,74,76,79,81,83,85,87,89,93,95,97,
%U 99,101,103,107,109,111,115,118,120,122,124,126,130,132,134
%N Number of divisible binary-containment pairs of positive integers up to n.
%C A pair of positive integers is divisible if the first divides the second, and is a binary containment if the positions of 1's in the reversed binary expansion of the first are a subset of those in the second.
%F a(n) = A325106(n) + n.
%e The a(1) = 1 through a(8) = 12 pairs:
%e (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1)
%e (2,2) (1,3) (1,3) (1,3) (1,3) (1,3) (1,3)
%e (2,2) (2,2) (1,5) (1,5) (1,5) (1,5)
%e (3,3) (3,3) (2,2) (2,2) (1,7) (1,7)
%e (4,4) (3,3) (2,6) (2,2) (2,2)
%e (4,4) (3,3) (2,6) (2,6)
%e (5,5) (4,4) (3,3) (3,3)
%e (5,5) (4,4) (4,4)
%e (6,6) (5,5) (5,5)
%e (6,6) (6,6)
%e (7,7) (7,7)
%e (8,8)
%t Table[Length[Select[Tuples[Range[n],2],Divisible[#[[2]],#[[1]]]&&SubsetQ[Position[Reverse[IntegerDigits[#[[2]],2]],1],Position[Reverse[IntegerDigits[#1[[1]],2]],1]]&]],{n,0,30}]
%Y Cf. A000005, A006218, A080572, A267610, A267700.
%Y Cf. A325094, A325102, A325106, A325107, A325108, A325109, A325110.
%K nonn
%O 0,3
%A _Gus Wiseman_, Mar 28 2019