login
A325078
Prime numbers congruent to 4, 10 or 25 modulo 39 representable by x^2 + x*y + 127*y^2.
3
127, 199, 283, 337, 433, 571, 727, 829, 883, 907, 1213, 1291, 1297, 1447, 1531, 1609, 1663, 1741, 2053, 2383, 2389, 2677, 3169, 3301, 3319, 3631, 3691, 3709, 3769, 3793, 4003, 4099, 4159, 4549, 4567, 4651, 4729, 4801, 4957, 5347, 5407, 5431, 5563, 5821, 6133
OFFSET
1,1
COMMENTS
Brink showed that prime numbers congruent to 4, 10 or 25 modulo 39 are representable by exactly one of the quadratic forms x^2 + x*y + 10*y^2 or x^2 + x*y + 127*y^2. A325077 corresponds to those representable by the first form, and this sequence corresponds to those representable by the second form.
LINKS
David Brink, Five peculiar theorems on simultaneous representation of primes by quadratic forms, Journal of Number Theory 129(2) (2009), 464-468, doi:10.1016/j.jnt.2008.04.007, MR 2473893.
EXAMPLE
Regarding 127:
- 127 is a prime number,
- 127 = 3*39 + 10,
- 127 = 0^2 + 0*1 + 127*1^2,
- hence 127 belongs to this sequence.
PROG
(PARI) See Links section.
CROSSREFS
See A325067 for similar results.
Cf. A325077.
Sequence in context: A195377 A142090 A095730 * A276261 A343319 A045117
KEYWORD
nonn
AUTHOR
Rémy Sigrist, Mar 28 2019
STATUS
approved