login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A325018 Triangle read by rows: T(n,k) is the number of chiral pairs of colorings of the facets of a regular n-dimensional orthoplex using exactly k colors. Row n has 2^n columns. 6
0, 1, 0, 0, 3, 3, 0, 1, 63, 662, 2400, 3900, 2940, 840, 0, 94, 97692, 10308758, 337560150, 5098740090, 42976836210, 224685801060, 775389028050, 1830791421900, 3007909258200, 3439214024400, 2685727044000, 1366701336000, 408648240000, 54486432000 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,5

COMMENTS

Also called cross polytope and hyperoctahedron. For n=1, the figure is a line segment with two vertices. For n=2 the figure is a square with four edges. For n=3 the figure is an octahedron with eight triangular faces. For n=4, the figure is a 16-cell with sixteen tetrahedral facets. The Schläfli symbol, {3,...,3,4}, of the regular n-dimensional orthoplex (n>1) consists of n-2 threes followed by a four. Each of its 2^n facets is an (n-1)-dimensional simplex. The chiral colorings of its facets come in pairs, each the reflection of the other.

Also the number of chiral pairs of colorings of the vertices of a regular n-dimensional orthotope (cube) using exactly k colors.

LINKS

Robert A. Russell, Table of n, a(n) for n = 1..510, rows 1..8, flattened.

E. M. Palmer and R. W. Robinson, Enumeration under two representations of the wreath product, Acta Math., 131 (1973), 123-143.

FORMULA

A325014(n,k) = Sum_{j=1..2^n} T(n,j) * binomial(k,j).

T(n,k) = A325016(n,k) - A325017(n,k) = (A325016(n,k) - A325019(n,k)) / 2 = A325017(n,k) - A325019(n,k).

EXAMPLE

Triangle begins with T(1,1):

0 1

0 0  3   3

0 1 63 662 2400 3900 2940 840

For T(2,3)=3, each square has one of the three colors on two adjacent edges.

MATHEMATICA

a48[n_] := a48[n] = DivisorSum[NestWhile[#/2&, n, EvenQ], MoebiusMu[#]2^(n/#)&]/(2n); (* A000048 *)

a37[n_] := a37[n] = DivisorSum[n, MoebiusMu[n/#]2^#&]/n; (* A001037 *)

CI0[{n_Integer}] := CI0[{n}] = CI[Transpose[If[EvenQ[n], p2 = IntegerExponent[n, 2]; sub = Divisors[n/2^p2]; {2^(p2+1) sub, a48 /@ (2^p2 sub) }, sub = Divisors[n]; {sub, a37 /@ sub}]]] 2^(n-1); (* even perm. *)

CI1[{n_Integer}] := CI1[{n}] = CI[sub = Divisors[n]; Transpose[If[EvenQ[n], {sub, a37 /@ sub}, {2 sub, (a37 /@ sub)/2}]]] 2^(n-1); (* odd perm. *)

compress[x : {{_, _} ...}] := (s = Sort[x]; For[i = Length[s], i > 1, i -= 1, If[s[[i, 1]]==s[[i-1, 1]], s[[i-1, 2]] += s[[i, 2]]; s = Delete[s, i], Null]]; s)

cix[{a_, b_}, {c_, d_}] := {LCM[a, c], (a b c d)/LCM[a, c]};

Unprotect[Times]; Times[CI[a_List], CI[b_List]] :=  (* combine *) CI[compress[Flatten[Outer[cix, a, b, 1], 1]]]; Protect[Times];

CI0[p_List] := CI0[p] = Expand[CI0[Drop[p, -1]] CI0[{Last[p]}] + CI1[Drop[p, -1]] CI1[{Last[p]}]]

CI1[p_List] := CI1[p] = Expand[CI0[Drop[p, -1]] CI1[{Last[p]}] + CI1[Drop[p, -1]] CI0[{Last[p]}]]

pc[p_List] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #] & /@ mb; n!/(Times @@ (ci!) Times @@ (mb^ci))] (* partition count *)

row[n_Integer] := row[n] = Factor[(Total[((CI0[#] - CI1[#]) pc[#]) & /@ IntegerPartitions[n]])/(n! 2^n)] /. CI[l_List] :> j^(Total[l][[2]])

array[n_, k_] := row[n] /. j -> k (* A325014 *)

Table[LinearSolve[Table[Binomial[i, j], {i, 1, 2^n}, {j, 1, 2^n}], Table[array[n, k], {k, 1, 2^n}]], {n, 1, 6}] // Flatten

CROSSREFS

Cf. A325016 (oriented), A325017 (unoriented), A325019 (achiral), A325014 (up to k colors).

Other n-dimensional polytopes: A325010 (orthotope).

Cf. A000048, A001037.

Sequence in context: A141947 A216804 A010607 * A118522 A179119 A098316

Adjacent sequences:  A325015 A325016 A325017 * A325019 A325020 A325021

KEYWORD

nonn,tabf

AUTHOR

Robert A. Russell, Jun 09 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 13 12:43 EST 2019. Contains 329968 sequences. (Running on oeis4.)