login
A324976
Rank of the n-th primary Carmichael number.
5
12, 8, 18, 12, 52, 52, 20, 32, 16, 54, 8, 36, 124, 34, 12, 72, 96, 26, 28, 76, 98, 1804, 108, 124, 18, 72, 172, 120, 10, 104, 32, 244, 130, 376, 18, 92, 780, 36, 172, 92, 284, 24, 198, 12, 244, 64, 234, 340, 100, 284, 24, 124, 44, 518, 364, 16, 82, 148, 8, 206
OFFSET
1,1
COMMENTS
See A324974 for definition and explanation of rank of a special polygonal number, hence of rank of a primary Carmichael number A324316 by Kellner and Sondow 2019.
LINKS
Bernd C. Kellner and Jonathan Sondow, On Carmichael and polygonal numbers, Bernoulli polynomials, and sums of base-p digits, Integers 21 (2021), #A52, 21 pp.; arXiv:1902.10672 [math.NT], 2019.
Bernd C. Kellner, On primary Carmichael numbers, Integers 22 (2022), #A38, 39 pp.; arXiv:1902.11283 [math.NT], 2019.
Wikipedia, Polygonal number
FORMULA
a(n) = 2+2*((m/p)-1)/(p-1), where m = A324316(n) and p is its greatest prime factor. Hence a(n) is even; see Formula in A324975.
EXAMPLE
If m = A324316(1) = 1729 = 7*13*19, then p = 19, so a(1) = 2+2*((1729/19)-1)/(19-1) = 12.
MATHEMATICA
SD[n_, p_] := If[n < 1 || p < 2, 0, Plus @@ IntegerDigits[n, p]];
LP[n_] := Transpose[FactorInteger[n]][[1]];
TestCP[n_] := (n > 1) && SquareFreeQ[n] && VectorQ[LP[n], SD[n, #] == # &];
T = Select[Range[1, 10^7, 2], TestCP[#] &];
GPF[n_] := Last[Select[Divisors[n], PrimeQ]];
Table[2 + 2*(T[[i]]/GPF[T[[i]]] - 1)/(GPF[T[[i]]] - 1), {i, Length[T]}]
CROSSREFS
Subsequence of A324975 (rank of the n-th Carmichael number A002997) and of A324974 (rank of the n-th special polygonal number A324973).
Cf. also A324316, A324972.
Sequence in context: A071279 A118656 A094332 * A261402 A307171 A040134
KEYWORD
nonn,base
AUTHOR
EXTENSIONS
More terms from Amiram Eldar, Mar 27 2019
STATUS
approved