login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A324955 E.g.f.: Sum_{n>=0} x^n * (exp(n*x) + 1)^n / (1 - x*exp(n*x))^(n+1). 2
1, 3, 20, 249, 4732, 124185, 4246506, 181846945, 9472372456, 586974323889, 42514726669390, 3548250184843881, 337212466335415980, 36130810233578116537, 4327504309724450845186, 575155450819339262287185, 84280669700080562576116816, 13539565474420162059556816353, 2372630265293612822359985196054, 451491872253364154628541302357529, 92919411414969790075996024292993620 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Paul D. Hanna, Table of n, a(n) for n = 0..200

FORMULA

E.g.f.: Sum_{n>=0} x^n * (exp(n*x) + 1)^n / (1 - x*exp(n*x))^(n+1).

E.g.f.: Sum_{n>=0} x^n * Sum_{k=0..n} binomial(n,k) * (exp(n*x) + exp(k*x))^(n-k).

E.g.f.: Sum_{n>=0} x^n * Sum_{k=0..n} binomial(n,k) * Sum_{j=0..n-k} binomial(n-k,j) * exp((n-j)*(n-k)*x).

FORMULAS INVOLVING TERMS.

a(n) = Sum_{i=0..n} n!/i! * Sum_{j=0..n-i} binomial(n-i,j) * Sum_{k=0..n-i-j} binomial(n-i-j,k) * (n-i-j)^i * (n-i-k)^i.

a(n) = Sum_{i=0..n} Sum_{j=0..n-i} Sum_{k=0..n-i-j} n!*(n-i)! / ((n-i-j-k)! * i!*j!*k!) * (n-i-j)^i * (n-i-k)^i.

EXAMPLE

E.g.f: A(x) = 1 + 3*x + 20*x^2/2! + 249*x^3/3! + 4732*x^4/4! + 124185*x^5/5! + 4246506*x^6/6! + 181846945*x^7/7! + 9472372456*x^8/8! + 586974323889*x^9/9! + 42514726669390*x^10/10! + ...

such that

A(x) = 1/(1-x) + x*(exp(x) + 1)/(1 - x*exp(x))^2 + x^2*(exp(2*x) + 1)^2/(1 - x*exp(2*x))^3 + x^3*(exp(3*x) + 1)^3/(1 - x*exp(3*x))^4 + x^4*(exp(4*x) + 1)^4/(1 - x*exp(4*x))^5 + x^5*(exp(5*x) + 1)^5/(1 - x*exp(5*x))^6 + x^6*(exp(6*x) + 1)^6/(1 - x*exp(6*x))^7 + x^7*(exp(x)^7 + 1)^7/(1 - x*exp(x)^7)^8 + ...

PROG

(PARI) {a(n) = my(A = sum(m=0, n+1, x^m*(exp(m*x +x*O(x^n) ) + 1)^m/(1 - x*exp(m*x +x*O(x^n) ) )^(m+1) )); n!*polcoeff(A, n)}

for(n=0, 25, print1(a(n), ", "))

(PARI) {a(n) = sum(i=0, n, n!/i! * sum(j=0, n-i, binomial(n-i, j) * sum(k=0, n-i-j, binomial(n-i-j, k) * (n-i-j)^i * (n-i-k)^i )))}

for(n=0, 25, print1(a(n), ", "))

(PARI) {a(n) = sum(i=0, n, sum(j=0, n-i, sum(k=0, n-i-j, n!*(n-i)!/((n-i-j-k)!*i!*j!*k!) * (n-i-j)^i * (n-i-k)^i )))}

for(n=0, 25, print1(a(n), ", "))

CROSSREFS

Cf. A324954.

Sequence in context: A256018 A227469 A262208 * A183607 A197322 A197975

Adjacent sequences:  A324952 A324953 A324954 * A324956 A324957 A324958

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Mar 26 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 18 01:04 EDT 2019. Contains 328135 sequences. (Running on oeis4.)