%I #4 Mar 22 2019 00:33:08
%S 1,1,2,4,8,17,37,83,189,436,1014,2373,5578,13156,31104,73665,174665,
%T 414427,983606,2334488
%N Number of unlabeled rooted trees with n vertices whose non-leaf terminal subtrees are all different.
%C The Matula-Goebel numbers of these trees are given by A324935.
%e The a(1) = 1 through a(6) = 17 trees:
%e o (o) (oo) (ooo) (oooo) (ooooo)
%e ((o)) ((oo)) ((ooo)) ((oooo))
%e (o(o)) (o(oo)) (o(ooo))
%e (((o))) (oo(o)) (oo(oo))
%e (((oo))) (ooo(o))
%e ((o(o))) (((ooo)))
%e (o((o))) ((o)(oo))
%e ((((o)))) ((o(oo)))
%e ((oo(o)))
%e (o((oo)))
%e (o(o(o)))
%e (oo((o)))
%e ((((oo))))
%e (((o(o))))
%e ((o((o))))
%e (o(((o))))
%e (((((o)))))
%t durt[n_]:=Join@@Table[Select[Union[Sort/@Tuples[durt/@ptn]],UnsameQ@@Cases[#,{__},{0,Infinity}]&],{ptn,IntegerPartitions[n-1]}];
%t Table[Length[durt[n]],{n,10}]
%Y Cf. A000081, A004111, A290689, A317713, A324850, A324922, A324923, A324924, A324931, A324935.
%K nonn,more
%O 1,3
%A _Gus Wiseman_, Mar 21 2019