login
A324928
Matula-Goebel numbers of rooted trees of depth 3.
5
5, 10, 13, 15, 17, 20, 23, 25, 26, 30, 34, 35, 37, 39, 40, 43, 45, 46, 50, 51, 52, 60, 61, 65, 67, 68, 69, 70, 73, 74, 75, 78, 80, 85, 86, 89, 90, 91, 92, 95, 100, 102, 103, 104, 105, 107, 111, 115, 117, 119, 120, 122, 125, 129, 130, 134, 135, 136, 138, 140
OFFSET
1,1
COMMENTS
Numbers n such that A109082(n) = 3.
EXAMPLE
The sequence of all rooted trees of depth 3 together with their Matula-Goebel numbers begins:
5: (((o)))
10: (o((o)))
13: ((o(o)))
15: ((o)((o)))
17: (((oo)))
20: (oo((o)))
23: (((o)(o)))
25: (((o))((o)))
26: (o(o(o)))
30: (o(o)((o)))
34: (o((oo)))
35: (((o))(oo))
37: ((oo(o)))
39: ((o)(o(o)))
40: (ooo((o)))
43: ((o(oo)))
45: ((o)(o)((o)))
46: (o((o)(o)))
50: (o((o))((o)))
51: ((o)((oo)))
52: (oo(o(o)))
60: (oo(o)((o)))
MATHEMATICA
Select[Range[100], Length[NestWhileList[Times@@PrimePi/@FactorInteger[#][[All, 1]]&, #, #>1&]]-1==3&]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 21 2019
STATUS
approved