
1, 1, 2, 3, 4, 2, 8, 7, 6, 4, 16, 6, 32, 8, 8, 15, 64, 6, 128, 12, 16, 16, 256, 14, 12, 32, 14, 24, 512, 8, 1024, 31, 32, 64, 32, 18, 2048, 128, 64, 28, 4096, 16, 8192, 48, 24, 256, 16384, 30, 24, 12, 128, 96, 32768, 14, 64, 56, 256, 512, 65536, 24, 131072, 1024, 48, 63, 128, 32, 262144, 192, 512, 32, 524288, 42, 1048576, 2048, 24, 384
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


LINKS

Antti Karttunen, Table of n, a(n) for n = 1..4096
Index entries for sequences related to binary expansion of n
Index entries for sequences computed from indices in prime factorization


EXAMPLE

For n = 900 = 2^2 * 3^2 * 5^2, a(900) = A156552(4) * A156552(9) * A156552(25) = 3*6*12 = 216.


PROG

(PARI)
A156552(n) = { my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1])  1); res += (p * p2 * (2^(f[i, 2])  1)); p2 <<= f[i, 2]); res }; \\ From A156552
A324911(n) = { my(f=factor(n)); prod(i=1, #f~, A156552(f[i, 1]^f[i, 2])); };


CROSSREFS

Cf. A156552, A324910, A324912.
Cf. also A324106.
Sequence in context: A047994 A193024 A153038 * A220335 A117009 A204842
Adjacent sequences: A324908 A324909 A324910 * A324912 A324913 A324914


KEYWORD

nonn,mult


AUTHOR

Antti Karttunen, Apr 14 2019


STATUS

approved

