This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A324893 a(n) = sigma(A097706(n)), where A097706(n) is the part of n composed of prime factors of form 4k+3. 2
 1, 1, 4, 1, 1, 4, 8, 1, 13, 1, 12, 4, 1, 8, 4, 1, 1, 13, 20, 1, 32, 12, 24, 4, 1, 1, 40, 8, 1, 4, 32, 1, 48, 1, 8, 13, 1, 20, 4, 1, 1, 32, 44, 12, 13, 24, 48, 4, 57, 1, 4, 1, 1, 40, 12, 8, 80, 1, 60, 4, 1, 32, 104, 1, 1, 48, 68, 1, 96, 8, 72, 13, 1, 1, 4, 20, 96, 4, 80, 1, 121, 1, 84, 32, 1, 44, 4, 12, 1, 13, 8, 24, 128, 48, 20, 4, 1, 57, 156, 1, 1, 4 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 LINKS Antti Karttunen, Table of n, a(n) for n = 1..20000 FORMULA Multiplicative with a(p^e) = (p^(e+1) - 1)/(p-1) if p == 3 (mod 4), otherwise a(p^e) = 1. a(n) = A000203(A097706(n)). a(n) = A000593(n) / A324891(n). MATHEMATICA Array[DivisorSigma[1, Times @@ Power @@@ Select[FactorInteger[#], Mod[#[[1]], 4] == 3 &]] &, 102] (* Michael De Vlieger, Mar 30 2019 *) PROG (PARI) A324893(n) = { my(f=factor(n)); prod(i=1, #f~, if(f[i, 1]%4<3, 1, ((f[i, 1]^(1+f[i, 2]))-1)/(f[i, 1]-1))); }; (PARI) A097706(n) = { my(f=factor(n)); prod(i=1, #f~, if(f[i, 1]%4<3, 1, f[i, 1])^f[i, 2]); }; A324893(n) = sigma(A097706(n)); CROSSREFS Cf. A000203, A000593, A097706, A324891. Sequence in context: A116669 A016523 A026998 * A301626 A080061 A246595 Adjacent sequences:  A324890 A324891 A324892 * A324894 A324895 A324896 KEYWORD nonn,mult AUTHOR Antti Karttunen, Mar 27 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 25 05:41 EDT 2019. Contains 324346 sequences. (Running on oeis4.)