login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

a(n) = 1 if A055396(n) < A324885(n), otherwise 0.
5

%I #13 Mar 28 2019 20:23:54

%S 0,0,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,0,1,0,1,0,1,

%T 0,1,0,1,1,1,0,1,0,1,1,1,0,1,0,0,1,1,0,1,0,1,1,1,0,1,0,1,1,1,0,1,0,1,

%U 0,1,0,1,0,1,0,1,0,1,0,1,1,1,0,1,1,1,1,1,0,1,0,1,0,1,0,1,0,0,1,1,0,1,0,1,1

%N a(n) = 1 if A055396(n) < A324885(n), otherwise 0.

%C Difference between the 2-adic valuations of A324819(n) and A324866(n).

%C Of the first 10000 terms, 2540 are 0's and 7460's are 1's. Even n such that a(n) = 0 are rare: 2, 10, 50, 98, 154, 266, 374, 598, 770, 1054, 1250, 1558, 2162, 2662, 3422, 4154, 5390, 5402, 6578, 6806, 8342, 8918, 9682 are all such n less than 10001.

%H Antti Karttunen, <a href="/A324883/b324883.txt">Table of n, a(n) for n = 1..10000</a> (based on Hans Havermann's factorization of A156552)

%H <a href="/index/Ch#char_fns">Index entries for characteristic functions</a>

%H <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>

%H <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>

%F a(n) = A324884(n) - A324882(n).

%F For n > 1, a(n) = A007814(A324819(n)) - A007814(A324866(n)).

%F For n > 1, a(n) = A324903(A156552(n)).

%F a(p) = 0 for all primes p.

%o (PARI)

%o \\ Needs code also from A323243.

%o A156552(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552

%o A324819(n) = bitor(2*A156552(n),A323243(n));

%o A324866(n) = { my(k=A156552(n)); bitor(k,(A323243(n)-k)); };

%o A001511ext(n) = if(!n,n,sign(n)*(1+valuation(n,2))); \\ Like A001511 but gives 0 for 0 and -A001511(-n) for negative numbers.

%o A324882(n) = A001511ext(A324866(n));

%o A324884(n) = A001511ext(A324819(n));

%o A324883(n) = (A324884(n)-A324882(n));

%Y Cf. A001511, A007814, A055396, A156552, A323243, A324819, A324866, A324882, A324884, A324885, A324903.

%K nonn

%O 1

%A _Antti Karttunen_, Mar 28 2019