login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A324847 Numbers divisible by at least one of their prime indices. 19

%I

%S 2,4,6,8,10,12,14,15,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44,45,

%T 46,48,50,52,54,55,56,58,60,62,64,66,68,70,72,74,75,76,78,80,82,84,86,

%U 88,90,92,94,96,98,100,102,104,105,106,108,110,112,114,116

%N Numbers divisible by at least one of their prime indices.

%C A prime index of n is a number m such that prime(m) divides n.

%C If n is in the sequence, then so are all multiples of n. - _Robert Israel_, Mar 19 2019

%H Robert Israel, <a href="/A324847/b324847.txt">Table of n, a(n) for n = 1..10000</a>

%e The sequence of terms together with their prime indices begins:

%e 2: {1}

%e 4: {1,1}

%e 6: {1,2}

%e 8: {1,1,1}

%e 10: {1,3}

%e 12: {1,1,2}

%e 14: {1,4}

%e 15: {2,3}

%e 16: {1,1,1,1}

%e 18: {1,2,2}

%e 20: {1,1,3}

%e 22: {1,5}

%e 24: {1,1,1,2}

%e 26: {1,6}

%e 28: {1,1,4}

%e 30: {1,2,3}

%e 32: {1,1,1,1,1}

%e 34: {1,7}

%e 36: {1,1,2,2}

%p filter:= proc(n) local F;

%p F:= map(numtheory:-pi, numtheory:-factorset(n));

%p ormap(t -> n mod t = 0, F);

%p end proc:

%p select(filter, [$1..200]); # _Robert Israel_, Mar 19 2019

%t Select[Range[100],Or@@Cases[If[#==1,{},FactorInteger[#]],{p_,_}:>Divisible[#,PrimePi[p]]]&]

%o (PARI) isok(n) = {my(f = factor(n)[,1]); for (k=1, #f, if (!(n % primepi(f[k])), return (1));); return (0);} \\ _Michel Marcus_, Mar 19 2019

%Y Complement of A324846.

%Y Cf. A003963, A056239, A112798, A120383, A289509, A290822, A304360, A306844.

%Y Cf. A324695, A324741, A324743, A324847, A324756, A324758, A324765, A324848, A324849, A324850, A324852, A324853.

%K nonn

%O 1,1

%A _Gus Wiseman_, Mar 18 2019

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 31 19:37 EDT 2020. Contains 333151 sequences. (Running on oeis4.)