login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A324827 Number of divisors d of n such that A323243(d) is either 2 or 3 (mod 4). 3
0, 0, 1, 0, 1, 2, 1, 0, 1, 1, 1, 2, 1, 2, 3, 0, 1, 3, 1, 1, 3, 1, 1, 2, 1, 1, 1, 2, 1, 4, 1, 0, 3, 1, 3, 3, 1, 2, 2, 1, 1, 6, 1, 1, 3, 1, 1, 2, 1, 2, 2, 1, 1, 4, 3, 2, 2, 2, 1, 4, 1, 1, 3, 0, 3, 4, 1, 1, 3, 5, 1, 3, 1, 1, 4, 2, 3, 3, 1, 1, 1, 1, 1, 6, 2, 1, 2, 1, 1, 6, 3, 1, 3, 1, 2, 2, 1, 2, 3, 2, 1, 4, 1, 1, 6 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,6

LINKS

Antti Karttunen, Table of n, a(n) for n = 1..10000 (based on Hans Havermann's factorization of A156552)

Index entries for sequences related to binary expansion of n

Index entries for sequences computed from indices in prime factorization

Index entries for sequences related to sigma(n)

FORMULA

a(n) = A000005(n) - A324826(n).

a(p) = 1 for all odd primes p.

PROG

(PARI) A324827(n) = sumdiv(n, d, ((A323243(d)%4)>1));

CROSSREFS

Cf. A000005, A324825, A324826, A324830, A324831, A324832.

Sequence in context: A264997 A222759 A024940 * A205217 A054635 A003137

Adjacent sequences:  A324824 A324825 A324826 * A324828 A324829 A324830

KEYWORD

nonn

AUTHOR

Antti Karttunen, Mar 16 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 09:53 EST 2019. Contains 329862 sequences. (Running on oeis4.)