This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A324815 a(n) = 2*A156552(n) AND A323243(n), where AND is bitwise-and, A004198. 6
 0, 0, 0, 4, 0, 2, 0, 8, 12, 0, 0, 4, 0, 2, 16, 24, 0, 10, 0, 4, 36, 0, 0, 8, 24, 0, 24, 0, 0, 32, 0, 32, 4, 0, 40, 32, 0, 2, 128, 8, 0, 2, 0, 4, 36, 0, 0, 16, 48, 18, 4, 4, 0, 26, 72, 8, 512, 2, 0, 4, 0, 0, 12, 104, 8, 0, 0, 0, 4, 2, 0, 72, 0, 0, 32, 0, 80, 0, 0, 16, 8, 0, 0, 20, 256, 0, 2048, 0, 0, 74, 128, 0, 0, 0, 520, 56, 0, 32, 128, 64, 0, 2, 0, 8, 64 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 LINKS Antti Karttunen, Table of n, a(n) for n = 1..10000  (based on Hans Havermann's factorization of A156552) FORMULA a(n) = 2*A156552(n) AND A323243(n), where AND is A004198. a(n) = 2*A156552(n) - A324716(n) = 2*A156552(n) XOR A324716(n), where XOR is A003987. For n > 1, a(n) = A318468(A156552(n)). a(p) = 0 for all primes p. a(A324201(n)) = A139256(n). A000120(a(n)) = A324816(n). PROG (PARI) A156552(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552 by David A. Corneth A324815(n) = bitand(2*A156552(n), A323243(n)); \\ Needs code also from A323243. CROSSREFS Cf. A003987, A004198, A139256, A156552, A318468, A323243, A324201, A324716, A324816. Sequence in context: A010635 A272198 A272203 * A019200 A324820 A087604 Adjacent sequences:  A324812 A324813 A324814 * A324816 A324817 A324818 KEYWORD nonn AUTHOR Antti Karttunen, Mar 17 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 22 22:34 EDT 2019. Contains 328335 sequences. (Running on oeis4.)