login
Sum of A324828(d) over the divisors d of n.
2

%I #11 Mar 17 2019 21:08:08

%S 0,1,1,2,1,2,1,2,2,3,1,4,1,2,2,2,1,4,1,4,3,2,1,4,2,2,2,4,1,4,1,2,2,2,

%T 2,6,1,2,2,4,1,4,1,4,4,2,1,4,2,5,2,4,1,4,3,4,2,2,1,6,1,2,4,2,2,4,1,4,

%U 2,4,1,6,1,2,4,4,2,4,1,4,2,2,1,8,2,2,2,4,1,8,3,4,2,2,2,4,1,3,4,6,1,4,1,4,4

%N Sum of A324828(d) over the divisors d of n.

%C Inverse Möbius transform of A324828.

%H Antti Karttunen, <a href="/A324810/b324810.txt">Table of n, a(n) for n = 1..10000</a> (based on Hans Havermann's factorization of A156552)

%H <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>

%H <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>

%H <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>

%F a(n) = Sum_{d|n} A324828(d).

%F a(p) = 1 for all primes p.

%F A000035(a(n)) = A324823(n) = A323243(n) mod 2.

%o (PARI)

%o A324712(n) = { my(v=0); fordiv(n, d, if(issquarefree(n/d), v=bitxor(v, A323243(d)))); (v); }; \\ Needs also code from A323243.

%o A324828(n) = (A324712(n)%2);

%o A324810(n) = sumdiv(n,d,A324828(d));

%Y Cf. A000203, A156552, A323243, A324543, A324712, A324823, A324825, A324828.

%K nonn

%O 1,4

%A _Antti Karttunen_, Mar 17 2019