login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A324765 Number of recursively anti-transitive rooted trees with n nodes. 14
1, 1, 2, 3, 6, 11, 26, 52, 119, 266, 618, 1432, 3402, 8093, 19505, 47228, 115244, 282529, 696388, 1723400 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

An unlabeled rooted tree is recursively anti-transitive if no branch of a branch of a terminal subtree is a branch of the same subtree.

LINKS

Table of n, a(n) for n=1..20.

EXAMPLE

The a(1) = 1 through a(6) = 11 recursively anti-transitive rooted trees:

  o  (o)  (oo)   (ooo)    (oooo)     (ooooo)

          ((o))  ((oo))   ((ooo))    ((oooo))

                 (((o)))  (((oo)))   (((ooo)))

                          ((o)(o))   ((o)(oo))

                          (o((o)))   (o((oo)))

                          ((((o))))  (oo((o)))

                                     ((((oo))))

                                     (((o)(o)))

                                     ((o((o))))

                                     (o(((o))))

                                     (((((o)))))

MATHEMATICA

nallt[n_]:=Select[Union[Sort/@Join@@(Tuples[nallt/@#]&/@IntegerPartitions[n-1])], Intersection[Union@@#, #]=={}&];

Table[Length[nallt[n]], {n, 10}]

CROSSREFS

Cf. A000081, A290689, A301700, A304360, A306844, A317787, A318185.

Cf. A324695, A324751, A324756, A324758, A324764, A324766, A324767, A324768.

Cf. A324838, A324840, A324844.

Sequence in context: A107113 A156807 A032256 * A208602 A051603 A094927

Adjacent sequences:  A324762 A324763 A324764 * A324766 A324767 A324768

KEYWORD

nonn,more

AUTHOR

Gus Wiseman, Mar 17 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 29 02:19 EDT 2020. Contains 333104 sequences. (Running on oeis4.)