login
A324761
Heinz numbers of integer partitions not containing 1 or any prime indices of the parts.
3
1, 3, 5, 7, 9, 11, 13, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 41, 43, 47, 49, 51, 53, 57, 59, 61, 63, 65, 67, 71, 73, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 107, 109, 113, 115, 121, 123, 125, 127, 129, 131, 133, 137, 139, 143, 147, 149
OFFSET
1,2
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
EXAMPLE
The sequence of terms together with their prime indices begins:
1: {}
3: {2}
5: {3}
7: {4}
9: {2,2}
11: {5}
13: {6}
17: {7}
19: {8}
21: {2,4}
23: {9}
25: {3,3}
27: {2,2,2}
29: {10}
31: {11}
33: {2,5}
35: {3,4}
37: {12}
41: {13}
43: {14}
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Select[Range[1, 100, 2], Intersection[primeMS[#], Union@@primeMS/@primeMS[#]]=={}&]
CROSSREFS
The subset version is A324742, with maximal case A324763. The strict integer partition version is A324752. The integer partition version is A324757. An infinite version is A324695.
Sequence in context: A084820 A324846 A324760 * A356171 A244579 A151991
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 17 2019
STATUS
approved