%I #7 Mar 16 2019 10:12:33
%S 1,0,1,1,1,1,2,3,2,4,4,4,6,8,8,11,10,15,16,19,23,27,28,35,39,47,50,63,
%T 68,77,91,102,114,130,147,169,187,213,237,268,300,336,380,422,472,525,
%U 587,647,731,810,895,996,1102,1227,1355,1498,1661,1818,2020,2221
%N Number of strict integer partitions of n not containing 1 or any part whose prime indices all belong to the partition.
%C A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%e The a(2) = 1 through a(17) = 15 strict integer partitions (A...H = 10...17):
%e 2 3 4 5 6 7 8 9 A B C D E F G H
%e 42 43 62 54 64 65 75 76 86 87 97 98
%e 52 63 73 83 84 85 95 96 A6 A7
%e 72 82 542 93 94 A4 A5 C4 B6
%e A2 A3 B3 B4 D3 C5
%e 642 B2 C2 C3 E2 D4
%e 643 752 D2 763 E3
%e 652 842 654 862 F2
%e 762 943 854
%e 843 A42 863
%e 852 872
%e A43
%e A52
%e B42
%e 6542
%t Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&!MemberQ[#,1]&&!MemberQ[#,k_/;SubsetQ[#,PrimePi/@First/@FactorInteger[k]]]&]],{n,0,30}]
%Y The subset version is A324739. The non-strict version is A324755. The Heinz number version is A324760. An infinite version is A324694.
%Y Cf. A000720, A001462, A007097, A074971, A078374, A112798, A276625, A290822, A304360, A305713, A306844.
%Y Cf. A324696, A324737, A324742, A324744, A324764.
%K nonn
%O 0,7
%A _Gus Wiseman_, Mar 15 2019