login
A324726
Numbers such that 2n is equal to A318466(n), bitor(2*n,sigma(n)), where bitor is A003986.
4
3, 6, 7, 14, 15, 21, 22, 28, 31, 46, 55, 57, 62, 63, 86, 92, 93, 94, 105, 110, 111, 124, 127, 154, 170, 171, 188, 189, 190, 201, 213, 215, 217, 231, 237, 248, 249, 250, 253, 254, 255, 310, 315, 316, 351, 357, 363, 369, 374, 376, 381, 382, 393, 430, 434, 447, 465, 469, 473, 483, 489, 494, 496, 497, 501, 506, 508, 511, 602
OFFSET
1,1
COMMENTS
Intersection with A324652 gives A000396.
MATHEMATICA
Select[Range[1000], 2*# == BitOr[2*#, DivisorSigma[1, #]] &] (* Paolo Xausa, Mar 11 2024 *)
PROG
(PARI) for(n=1, oo, if(((2*n)==bitor(2*n, sigma(n))), print1(n, ", ")));
CROSSREFS
Cf. A000396, A003986, A318466, A324652, A324723, A324727 (the odd terms).
Sequence in context: A255683 A127307 A099403 * A333379 A037015 A138218
KEYWORD
nonn,look
AUTHOR
Antti Karttunen, Mar 15 2019
STATUS
approved