login
A324639
Numbers k such that bitand(2k,sigma(k)) = 2*bitand(k,sigma(k)-k), where bitand is bitwise-AND, A004198.
3
1, 2, 4, 5, 6, 8, 9, 10, 16, 17, 20, 26, 28, 32, 36, 37, 38, 41, 44, 50, 64, 73, 74, 88, 98, 100, 104, 128, 130, 134, 136, 137, 149, 152, 153, 164, 172, 184, 256, 257, 261, 262, 264, 272, 277, 284, 293, 294, 304, 328, 337, 368, 392, 405, 410, 424, 442, 464, 496, 512, 520, 521, 522, 528, 529, 538, 548, 549, 550, 556, 560, 577
OFFSET
1,2
COMMENTS
Numbers k for which 2*A318458(k) = A318468(k).
MATHEMATICA
Select[Range[1000], Block[{s = DivisorSigma[1, #]}, BitAnd[2*#, s] == 2* BitAnd[#, s-#]] &] (* Paolo Xausa, Mar 11 2024 *)
PROG
(PARI) for(n=1, oo, if( (2*(bitand(n, sigma(n)-n))==bitand(n+n, sigma(n))), print1(n, ", ")));
CROSSREFS
Subsequences: A324643, A324718 (odd terms).
Sequence in context: A035063 A004128 A023717 * A171599 A328594 A346129
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 14 2019
STATUS
approved