login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A324574 a(1) = 0; for n > 1, a(n) = A033879(A087207(n)). 7
0, 1, 1, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 5, 0, 1, 1, 2, 1, 4, 2, 16, 1, 2, 1, 18, 1, 5, 1, 6, 1, 1, -3, 46, -4, 2, 1, 82, 14, 4, 1, 10, 1, 16, 0, 256, 1, 2, 1, 4, -12, 18, 1, 2, -2, 5, 8, 226, 1, 6, 1, 748, 2, 1, -19, 18, 1, 46, -12, 12, 1, 2, 1, 1362, 0, 82, -12, 22, 1, 4, 1, 3838, 1, 10, 10, 5458, 254, 16, 1, 6, -10, 256, -348, 12250 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,6

COMMENTS

As A087207 is a surjective function that toggles the parity, it follows that if it can be proved/disproved that a(n) = 0 for some/any even n, then it also proves/disproves the existence of odd perfect numbers.

The positions (n > 1) of zeros in squarefree n, 15, 385, ..., can be obtained as A019565(A000396(n)).

LINKS

Antti Karttunen, Table of n, a(n) for n = 1..10000

Index entries for sequences related to binary expansion of n

Index entries for sequences computed from indices in prime factorization

Index entries for sequences related to sigma(n)

FORMULA

a(1) = 0; for n > 1, a(n) = A033879(A087207(n)).

a(n) = a(A007947(n)) = A324575(A007947(n)).

PROG

(PARI)

A033879(n) = (2*n-sigma(n));

A087207(n) = vecsum(apply(p->1<<primepi(p-1), factor(n)[, 1])); \\ From A087207

A324574(n) = if(1==n, 0, A033879(A087207(n)));

CROSSREFS

Cf. A000396, A007947, A033879, A019565, A087207, A324573, A324575.

Cf. also A323244, A323174, A324546.

Sequence in context: A139320 A174204 A118106 * A143201 A254048 A306671

Adjacent sequences:  A324571 A324572 A324573 * A324575 A324576 A324577

KEYWORD

sign

AUTHOR

Antti Karttunen, Mar 08 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 5 23:02 EDT 2020. Contains 333260 sequences. (Running on oeis4.)