login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A324502 a(n) = denominator of  Sum_{d|n} (1/pod(d)) where pod(k) = the product of the divisors of k (A007955). 1
1, 2, 3, 8, 5, 36, 7, 64, 27, 100, 11, 1728, 13, 196, 225, 1024, 17, 5832, 19, 8000, 441, 484, 23, 331776, 125, 676, 729, 21952, 29, 810000, 31, 32768, 1089, 1156, 1225, 10077696, 37, 1444, 1521, 2560000, 41, 3111696, 43, 85184, 91125, 2116, 47, 254803968, 343 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Sum_{d|n} (1/pod(d)) >= 1 for all n >= 1.

Is this a duplicate of A007955? - R. J. Mathar, Mar 28 2019

LINKS

Table of n, a(n) for n=1..49.

FORMULA

a(n) = n for noncomposite numbers n (A008578).

EXAMPLE

Sum_{d|n} (1/pod(d)) for n >= 1: 1, 3/2, 4/3, 13/8, 6/5, 67/36, 8/7, 105/64, 37/27, 171/100, 12/11, 3433/1728, ...

For n=4; Sum_{d|4} (1/pod(d)) = 1/pod(1) + 1/pod(2) + 1/pod(4) = (1/1) + (1/2) + (1/8) = 13/8; a(4) = 8.

MATHEMATICA

Table[Denominator[Sum[Product[1/d , {d, Divisors[k]}], {k, Divisors[n]} ]], {n, 1, 50}] (* G. C. Greubel, Mar 04 2019 *)

PROG

(MAGMA) [Denominator(&+[1 / &*[c: c in Divisors(d)]: d in Divisors(n)]): n in [1..50]]

(PARI) a(n) = denominator(sumdiv(n, d, 1/vecprod(divisors(d)))); \\ Michel Marcus, Mar 03 2019

(Sage) [sum(product(1/j for j in k.divisors()) for k in n.divisors() ).denominator() for n in (1..50)] # G. C. Greubel, Mar 04 2019

CROSSREFS

Cf. A007955, A324501 (numerators).

Sequence in context: A190997 A184392 A007955 * A170826 A162537 A109844

Adjacent sequences:  A324499 A324500 A324501 * A324503 A324504 A324505

KEYWORD

nonn,frac

AUTHOR

Jaroslav Krizek, Mar 02 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 25 04:27 EST 2021. Contains 340416 sequences. (Running on oeis4.)