This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A324493 Expansion of (1-18*x+x^2)^3*(1+18*x+x^2)^3*(1-x^2)^10/((1-76*x-x^2)*(1-4*x-x^2)^6*(1+4*x-x^2)^9). 1
 1, 64, 4096, 321088, 24547328, 1863823936, 141685338112, 10769916519488, 818653646495744, 62228468364344384, 4730181951405740032, 359556059457398798912, 27330990675083174064128, 2077514847565542865559104, 157918459404050737749520384, 12003880429566848976629213248 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..540 M. Baake, J. Hermisson, P. Pleasants, The torus parametrization of quasiperiodic LI-classes, J. Phys. A 30 (1997), no. 9, 3029-3056. See (43). FORMULA G.f.: (1-18*x+x^2)^3*(1+18*x+x^2)^3*(1-x^2)^10/((1-76*x-x^2)*(1-4*x-x^2)^6*(1+4*x-x^2)^9). MATHEMATICA CoefficientList[Series[(1 - 18 x + x^2)^3 (1 + 18 x + x^2)^3 (1 - x^2)^10 / ((1 - 76 x - x^2) (1 - 4 x - x^2)^6 (1 + 4 x - x^2)^9), {x, 0, 18}], x] (* Vincenzo Librandi, Mar 13 2019 *) PROG (MAGMA) m:=16; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1-18*x+x^2)^3*(1+18*x+x^2)^3*(1-x^2)^10/((1-76*x-x^2)*(1-4*x-x^2)^6*(1+4*x-x^2)^9)); // Vincenzo Librandi, Mar 13 2019 CROSSREFS Sequence in context: A267994 A089357 A144320 * A324490 A262396 A318015 Adjacent sequences:  A324490 A324491 A324492 * A324494 A324495 A324496 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Mar 12 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 21 17:20 EDT 2019. Contains 325198 sequences. (Running on oeis4.)