login
A324487
a(n) = A001350(n)^3.
5
0, 1, 1, 64, 125, 1331, 4096, 24389, 91125, 438976, 1771561, 7880599, 32768000, 141420761, 594823321, 2537716544, 10720765125, 45537538411, 192699928576, 817138135549, 3460080078125, 14662949322176, 62103840598801, 263115950765039, 1114512556032000, 4721424167332081, 19999831641819121
OFFSET
0,4
LINKS
M. Baake, J. Hermisson, P. Pleasants, The torus parametrization of quasiperiodic LI-classes, J. Phys. A 30 (1997), no. 9, 3029-3056. See Tables 5 and 6.
FORMULA
Conjectures from Colin Barker, Mar 13 2019: (Start)
G.f.: x*(1 + x^2)*(1 - 3*x + 47*x^2 - 96*x^3 + 104*x^4 + 96*x^5 + 47*x^6 + 3*x^7 + x^8) / ((1 - x)*(1 + x)*(1 - 3*x + x^2)*(1 + x - x^2)*(1 - x - x^2)*(1 + 3*x + x^2)*(1 - 4*x - x^2)).
a(n) = 4*a(n-1) + 12*a(n-2) - 44*a(n-3) - 44*a(n-4) + 132*a(n-5) + 66*a(n-6) - 132*a(n-7) - 44*a(n-8) + 44*a(n-9) + 12*a(n-10) - 4*a(n-11) - a(n-12) for n>11.
(End)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Mar 12 2019
STATUS
approved