login
A324486
G.f. = (1-3*x+x^2)^3*(1+3*x+x^2)^3*(1-x^2)^10/((1-4*x-x^2)*(1-x-x^2)^6*(1+x-x^2)^9).
2
1, 1, 1, 22, 53, 319, 1222, 5357, 22814, 95711, 409402, 1723313, 7327733, 30977386, 131351989, 556154467, 2356344131, 9980896486, 42280500142, 179102657228, 758687704322, 3213865245350, 13614106736560, 57670398570710, 244295410576130
OFFSET
0,4
LINKS
M. Baake, J. Hermisson, P. Pleasants, The torus parametrization of quasiperiodic LI-classes, J. Phys. A 30 (1997), no. 9, 3029-3056. See (41).
Index entries for linear recurrences with constant coefficients, signature (1, 31, -10, -395, -11, 2836, 641, -13015, -4380, 40719, 15801, -90074, -35605, 143915, 52948, -168028, -52948, 143915, 35605, -90074, -15801, 40719, 4380, -13015, -641, 2836, 11, -395, 10, 31, -1, -1).
PROG
(PARI) Vec((1-3*x+x^2)^3*(1+3*x+x^2)^3*(1-x^2)^10/((1-4*x-x^2)*(1-x-x^2)^6*(1+x-x^2)^9) + O(x^40)) \\ Colin Barker, Mar 13 2019
CROSSREFS
Sequence in context: A177726 A101571 A290381 * A351170 A122502 A244212
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Mar 12 2019
STATUS
approved