login
a(n) = A324484(n)/n.
4

%I #28 Apr 30 2021 02:57:39

%S 1,0,5,6,24,40,120,250,640,1452,3600,8510,20880,50460,124024,303750,

%T 750120,1853120,4600200,11437548,28527320,71281800,178526880,

%U 447893250,1125750120,2833844040,7144449920,18036271740,45591631800,115381449692,292329067800,741410192250

%N a(n) = A324484(n)/n.

%H Seiichi Manyama, <a href="/A324485/b324485.txt">Table of n, a(n) for n = 1..2000</a>

%H M. Baake, J. Hermisson, and P. Pleasants, <a href="http://dx.doi.org/10.1088/0305-4470/30/9/016">The torus parametrization of quasiperiodic LI-classes</a>, J. Phys. A 30 (1997), no. 9, 3029-3056. See Table 4.

%F From _Seiichi Manyama_, Apr 29 2021: (Start)

%F a(n) = (1/n) * Sum_{d|n} mu(n/d) * A001350(d)^2 = (1/n) * Sum_{d|n} mu(n/d) * A152152(d).

%F G.f.: Sum_{k>=1} mu(k) * log(f(x^k))/k , where f(x) = ((1-x-x^2) * (1+x-x^2))^2/((1-3*x+x^2) * (1-x)^2 * (1+x)^4). (End)

%o (PARI) a001350(n) = fibonacci(n+1)+fibonacci(n-1)-1-(-1)^n;

%o a(n) = sumdiv(n, d, moebius(n/d)*a001350(d)^2)/n; \\ _Seiichi Manyama_, Apr 29 2021

%o (PARI) f(x) = ((1-x-x^2)*(1+x-x^2))^2/((1-3*x+x^2)*(1-x)^2*(1+x)^4);

%o my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, moebius(k)*log(f(x^k))/k)) \\ _Seiichi Manyama_, Apr 29 2021

%Y Cf. A001350, A060280, A152152, A324483, A324484, A324489.

%K nonn

%O 1,3

%A _N. J. A. Sloane_, Mar 12 2019

%E More terms from _Seiichi Manyama_, Apr 29 2021