OFFSET
0,4
COMMENTS
A simple graph with n vertices has distinct rotations if all n rotations of its vertex set act on the edge set to give distinct graphs. It is covering if there are no isolated vertices. These are different from aperiodic graphs and acyclic graphs but are similar to aperiodic sequences (A000740) and aperiodic arrays (A323867).
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..50
Gus Wiseman, The a(4) = 28 graph covers with distinct rotations.
FORMULA
a(n) = Sum{d|n} mu(n/d) * Sum_{k=0..d} (-1)^(d-k)*binomial(d,k)*2^( k*(k-1)*n/(2*d) + k*(floor(n/(2*d))) ) for n > 0. - Andrew Howroyd, Aug 19 2019
MATHEMATICA
rotgra[g_, m_]:=Sort[Sort/@(g/.k_Integer:>If[k==m, 1, k+1])];
Table[Length[Select[Subsets[Subsets[Range[n], {2}]], And[Union@@#==Range[n], UnsameQ@@Table[Nest[rotgra[#, n]&, #, j], {j, n}]]&]], {n, 0, 5}]
PROG
(PARI) a(n)={if(n<1, n==0, sumdiv(n, d, moebius(n/d)*sum(k=0, d, (-1)^(d-k)*binomial(d, k)*2^(k*(k-1)*n/(2*d) + k*(n/d\2)))))} \\ Andrew Howroyd, Aug 19 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Feb 28 2019
EXTENSIONS
Terms a(7) and beyond from Andrew Howroyd, Aug 19 2019
STATUS
approved